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Simulation of transient gas flow at pipe-to-pipe intersections
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SUMMARY

We numerically investigate a well-established mathematical model for gas flow in pipeline networks. The
emphasis is given to the description of coupling conditions at pipe-to-pipe intersections. The accurate
prediction of these coupling conditions is essential in order to achieve good performance and reliable
numerical simulations of network simulations. Nowadays, a variety of theoretical results for a reduced
geometry exists. We conduct a numerical simulation of the two-dimensional representation at a pipe
intersection. The results are used for verification and comparison with known theoretical results. High-order
and non-oscillatory discretizations are used for solving the governing equations of gas flow. Verifications
are conducted for two types of junctions to analyse the most adequate coupling conditions. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last decade, there has been intense research in the field of transient gas flow of pipe
networks in the mathematical as well as in the engineering community. Among the many references
we refer to [1–14] and the publications of the pipeline interest group PSIG [15]. Currently, there
exists a variety of approximate and simplified models most of them based on the isothermal Euler
equations [7, 12] complemented by several numerical methods and approaches, see for example
[11, 14, 16, 17]. Most of the previous work is focused on the correct modelling and simulation
of the dynamics inside a pipe and only a few recent publications on pipe-to-pipe intersections
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and pipe networks exist, see [9, 18, 19]. The most challenging part is the correct modelling of the
dynamics near a pipe-to-pipe intersection since this influences most parts of the dynamics in the
connected pipes. Typically, a pipe-to-pipe intersection, e.g. tee fitting, is assumed to be a single
point (zero length). To obtain a well-posed problem, coupling conditions at the fitting have to be
derived. These conditions will then yield boundary conditions for the isothermal Euler equations.
Currently, there is a discussion on the correct coupling conditions for these models. For the sake
of completeness, we collect some known and established coupling conditions. In the engineering
community, usually conservation of mass and equal pressure directly at the point of intersection
[7, 12, 20] is assumed. This has been investigated mathematically, e.g. in [9]. Sometimes refined
models use tabulated values for so-called minor losses at pipe fittings [21]. Those tables depend
on gas properties, geometry effects and have been fitted against by real-world data. From a
mathematical point of view there is an alternative modelling of coupling conditions introduced in
[18]. Therein, a mathematical study of coupling conditions which conserve mass and momentum
has been conducted.

In this work we contribute to this discussion by a numerical study of an extended two-dimensional
model. We investigate the detailed dynamics at the tee fitting. We assume that the dynamics inside
each pipe are given by the transient isothermal Euler equations and resolve the detailed dynamics
inside different types of pipe-to-pipe intersections with a robust numerical scheme as discussed
below. The resolution is achieved by introducing a local zooming of the situation. This yields a two-
dimensional domain representing the tee. Therein, we simulate the gas dynamics and finally average
to obtain reference values. Those values are then compared to boundary values commonly used for
isothermal Euler equations. We compare the simulation results with the analytical solutions which
can be computed for constant gas states as in [9, 10, 18]. The comparison presented in the current
work, shows the validity of the assumptions of equal pressure and conservation mass through a tee
for the transient isothermal Euler equations under constraints on the initial data. Further, we found
cases where neither the conservation of mass nor the conservation of momentum or pressure is
guaranteed.

An important issue is the selection of the numerical scheme, which accurately resolves the two-
dimensional equations in the considered tees. It is well known that the solutions of these equations
present steep fronts, shocks and contact discontinuities, which need to be resolved accurately
in applications and often cause severe numerical difficulties. High-order accurate schemes have
become important in scientific computations because they offer a mean to obtain accurate solutions
with less work that may be required for methods of lower accuracy. The literature is abundant for
development of high-order methods for solving hyperbolic systems of conservation laws, among
others we cite the weighted essentially non-oscillatory (WENO) methods [22, 23]. In the current
work, we have implemented a fifth-order WENO scheme in the relaxation framework. First- and
second-order relaxation schemes have been studied in [24, 25]. A variety of third-order relaxation
schemes have also been developed in [26–28] for solving hyperbolic systems. The main advantage
in considering combined relaxation WENO approach lies essentially on the semilinear structure
of the relaxation system, which can be solved numerically without using Riemann solvers or
characteristic decompositions.

The layout of the paper is as follows. In Section 2, we describe the governing equations used
to model gas flow in pipeline networks. The coupling conditions at the pipeline junctions are
discussed in Section 3. In Section 4, we formulate the numerical methods used for the solution
procedure. Section 5 is devoted to numerical results for several test examples. We end the paper
with few concluding remarks in Section 6.
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2. EQUATIONS FOR TRANSIENT GAS FLOW IN PIPELINE NETWORKS

In pipelines, the transient flow of gas is adequately described by a one-dimensional approach. The
basic equations modelling the gas flow in pipes are derived from an equation of momentum, an
equation of continuity, an equation of energy and state equation, see [1, 20, 29] among others. For
practical applications, the form of the governing equations varies with respect to the assumptions
made. Simplified models are usually obtained by neglecting certain dynamical aspects of the
physical process, see [2] for an overview. In the current work, we focus on the full isothermal Euler
equations which are considered as most detailed for gas flow in pipelines. To keep the presentation
simple we assume that all pipes have the same diameter D and constant cross-sectional area.
Furthermore, we assume constant temperature distribution � in the network, steady-state friction
on all pipes and we neglect gravity effects by assuming horizontal pipes with zero slope. Hence,
the continuity equation for natural gas flow is given by

�t�k + �x (�kuk) = 0 (1)

where �k and uk are the gas density and the gas velocity along the pipe k. The momentum equation
for gas flow is

�t (�kuk) + �x (�ku
2
k + pk) = − fg

�kuk |uk |
2D

(2)

where pk is the gas pressure in the pipe k and fg is the friction factor for natural gas. The coefficient
fg can be calculated from the equation [30]

1√
fg

=−2 log

(
1

3.7065

�

D
− 5.0452

1

Re
log

(
1

2.8257

( �

D

)1.1098 + 5.8506

0.8981

1

Re

))
(3)

where � denotes the roughness coefficient of the pipe assumed to be equal for all pipes, and
Re= ūD/� denotes the Reynolds number defined by a reference velocity ū and the gas kinematic
viscosity �. Other approaches for the friction term are also possible, e.g. the Darcy–Weisbach
formula [20].

The gas flow model is closed by the equation of state

pk = Z R�

Mg
�k (4)

where Z is the natural gas compressibility factor, R is the universal gas constant and Mg is the
gas molecular weight. By defining the acoustic wave speed c as

c2 = Z R�

Mg
(5)

Equations (1) and (2) can be reformulated as

�t�k + �x (�kuk) = 0

�t (�kuk) + �x (�ku
2
k + c2�k) = − fg

�kuk |uk |
2D

(6)
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Equations (6) are known as isothermal Euler equations and describe transient fluid flow inside a
pipe k where k = 1, . . . , K where K is the total number of pipes in the network. We assume that
each pipe k is represented by an interval [ak, bk] for k = 1, . . . , K . If a pipe k is incoming or
outgoing to the whole network we set ak = −∞ or bk =+∞, respectively.

To simulate a pipe network over a time interval [0, T ] Equations (6) have to be complemented
by initial data (�0k, u

0
k) and appropriate boundary conditions at x = ak or bk . As outlined in the

introduction these conditions are obtained by prescribing coupling conditions at pipe fittings. We
give the details in the next section.

3. COUPLING CONDITIONS AT THE PIPE-TO-PIPE FITTINGS

3.1. One-dimensional situation

Boundary conditions for system (6) are obtained by defining suitable coupling conditions at pipe-
to-pipe intersections, see for example [7, 9]. In this section, we briefly describe these conditions and
further discussions can be found in the abovementioned references. In a mathematical framework,
the following conditions are commonly used in the literature [7, 9, 20].

Consider a single pipe-to-pipe fitting v where �−
v denotes indices of the incoming and �+

v indices
of the outgoing pipes as depicted in Figure 1. Hence,

(i) The mass is conserved through the intersection, i.e.∑
k∈�−

v

(�kuk)(bk, t) = ∑
k∈�+

v

(�kuk)(ak, t) ∀t>0 (7)

(ii) There is a single pressure at the intersection, i.e.

p(�k̃(bk̃, t)) = p(�k(ak, t)), ∀(k, k̃) ∈ �−
v × �+

v ∀t>0 (8)

1

2

3

4

m

m+1

m
+2k

Figure 1. An illustration of pipe-to-pipe intersection in a network with m ingoing pipelines
�−
v ={1, 2, . . . ,m} and K − m outgoing pipelines �+

v = {m + 1,m + 2, . . . , K }.
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Figure 2. Schematic representation of two types of tee fittings and modelling in the network.

The two conditions (7) and (8) yield boundary conditions for all connected pipes at ak and bk ,
compare [9, 10]. Further, it has been proven that system (6) complemented with (7) and (8) is a
mathematically well-posed problem provided the pipe-to-pipe fittings is a tee, i.e. a vertex v of
degree three as schematically depicted in Figure 2 and provided that the initial data �0k>0 and
u0k�0 are piecewise constant. Alternatively, in [18] condition (ii) is replaced by

(ii′) There is a single momentum at the intersection, i.e.

p(�k̃(bk̃, t)) + (�k̃u
2
k̃
)(bk̃, t) = p(�k(ak, t)) + (�ku

2
k)(ak, t) ∀(k, k̃) ∈ �−

v × �+
v ∀t>0 (9)

Again it has been proven [18] that system (6) complemented with (7) and (ii′) is a mathematically
well-posed problem provided that the initial data �0k>0 and u0k�0 are subsonic, i.e. u0k�c. Finally,
we emphasize that in the engineering community the following condition is often used [1, 20].

The effect of the geometry on the coupling condition is accounted for by empirical factors f̃ ,
which depend on the flow conditions as well as on the detailed geometry. Instead of requiring an
equal pressure (8) a pressure loss is introduced.

(ii′′) There exists a geometry and flow-dependent pressure loss f̃k̃,k , i.e.

p(�k̃(bk̃, t))= p(�k(ak, t)) − f̃k̃,k ∀(k, k̃) ∈ �−
v × �+

v ∀t>0

Sometimes empirical data are used to estimate the value of the losses f̃k,k̃ .

3.2. Local two-dimensional situation

However, all previous conditions might not represent the physical behaviour at the intersections
due to more complex gas interactions at pipe fitting. In the following, we propose a more de-
tailed modelling and simulation to derive boundary conditions at pipe intersections. To keep the
presentation simple and to compare later with analytical results we restrict the discussion to tee
fittings. We introduce a zooming of the local situation at the intersection and consider a local
two-dimensional situation. The zooming parameter to be introduced later is D>0. In the case of
the tee in Figure 2 we obtain the schematic picture shown in Figure 3, where the pipe width is of
order 2D.
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Zooming

1

u

v

3

2

Figure 3. Zooming at a tee fittings and its corresponding two-dimensional domain.

The governing equations in this T-shaped spatial domain are the two-dimensional isothermal
Euler equations

�t� + �x (�u) + �y(�v) = 0

�t (�u) + �x (�u2 + c2�) + �y(�uv) = − fg
�u

√
u2 + v2

2D

�t (�v) + �x (�uv) + �y(�v2 + c2�) = − fg
�v

√
u2 + v2

2D

(10)

where u and v are the velocity components in x- and y-direction, respectively. This two-dimensional
view is now used to obtain coupling conditions and then boundary conditions for (6). As in the
theoretical studies reported in [9, 18] for Equations (6), we consider constant initial data �0k, u

0
k

for k = 1–3. These data are used to define initial values for Equations (10) as

⎛
⎜⎜⎝

�0(x, y)

u0(x, y)

v0(x, y)

⎞
⎟⎟⎠=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

�01

u01

0

⎞
⎟⎟⎠ if (x, y)∈ ] − ∞, 0[ × ]0, 2D[

⎛
⎜⎜⎝

�03

u03

0

⎞
⎟⎟⎠ if (x, y)∈ ]0,∞[ × ]0, 2D[

⎛
⎜⎜⎝

�02

0

u02

⎞
⎟⎟⎠ if (x, y)∈ ] − D, D[ × ] − ∞, 0[

(11)

where again 2D is the width of the connected pipes and the point (x, y)= (0, 0) is at the inter-
section of all three pipes. We compute a well-developed solution � = �(t, x, y), u = u(t, x, y) and
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v = v(t, x, y) of (10)–(11) for t sufficiently large. To obtain states which can be compared to a
one-dimensional model we use volume averaging. We introduce the domains ��

i of size 2D × �
and depending on a scaling parameter �>0. The domains correspond to the one-dimensional pipes

��
1 = {(x, y) : −��x�0, 0�y�2D}

��
2 = {(x, y) : 0�x��, 0�y�2D}

��
3 = {(x, y) : −D�x�D, −��y�0}

(12)

Then, we compute the volume averages of densities and velocities for i = 1–3 by

��
i = 1

|��
i |
∫

��
i

�(t, x, y) dy dx

u�
i = 1

|��
i |
∫

��
i

u(t, x, y) dy dx

v
�
i = 1

|��
i |
∫

��
i

v(t, x, y) dy dx

(13)

Next, we let � → ∞ and obtain thereby functions �→ ��
i depending on the size of the domain

��
i . To resume the computations we use the combination of the following stopping criteria: in the

theoretical discussion [9] the coupling conditions are such that, finally, waves emerge from the
intersection. This can be mimiced in the two-dimensional representation by stopping the numerical
simulation once emerging waves leave the domain of computation. Furthermore, we introduce a
measure for the change in the averaged values: if |���

�
i |�� for some �0 for some tolerance �>0,

then we use this value �
�0
i as numerical reference for the one-dimensional model, i.e. we set

�1(b1) := �
�0
1

�k(ak) := �
�0
k , k = 2, 3

(14)

for �0 such that |���
�0
i |��. Analogously, we proceed to obtain values u1(b1) and uk(ak) with

k = 2, 3. Hence, we stop the computation either if |����| is small or once the waves left the
computational domain. The obtained values �� are then compared with the theoretical predictions
by investigating the relation between the values obtained in (14).

Remark 1
Some remarks are in order:

(i) The previous discussion focused on constant initial data since we later on compare with
the analytical results, see Section 5. However, the approach is not limited to this case and
general initial data can be considered.

(ii) The presentation has been given for a specific tee only, but is completely analogous in the
other possible cases of a tee intersection, as the right plot in Figure 2, or more general
geometries.

(iii) In Equation (10) we also have a friction term. However, in the network model (6) pipe
fittings are considered as points of zero length. To obtain comparable numerical results we
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492 M. HERTY AND M. SEAÏD

simulate (10) without friction effects fg = 0, but we emphasize that the proposed approach
is not limited to this case.

(iv) The local zooming could also be done for different geometries. However, most real-world
fittings are of T-shape.

4. NUMERICAL METHODS AND SOLUTION PROCEDURE

Equations (6) can be solved using already existing software from computational fluid dynamics
(CFD). Our focus in the present study is on investigating the coupling conditions described in the
previous section rather than developing new numerical method for solving the partial differential
equations (6). Therefore, we shall briefly highlight the schemes used for numerical solution of
(6) and the main part of the present work is devoted to discuss the procedure used to verify the
coupling conditions at pipeline junctions. For a single pipe, Equations (6) can be rewritten in a
compact vector form as

�tU + �xF(U) =Q(U) (15)

where

U=
(

�

�u

)
, F(U)=

(
�u

�u2 + c2�

)
, Q(U)=

⎛
⎝ 0

− fg
�u|u|
2D

⎞
⎠

Similarly, Equations (10) are rearranged as

�tU + �xF(U) + �yG(U) =Q(U) (16)

where

U=
⎛
⎜⎝

�

�u

�v

⎞
⎟⎠ , F(U)=

⎛
⎜⎜⎝

�u

�u2 + c2�

�uv

⎞
⎟⎟⎠

G(U)=

⎛
⎜⎜⎝

�v

�uv

�v2 + c2�

⎞
⎟⎟⎠ , Q(U)=

⎛
⎜⎜⎜⎜⎜⎝

0

− fg
�u

√
u2 + v2

2D

− fg
�v

√
u2 + v2

2D

⎞
⎟⎟⎟⎟⎟⎠

It is easy to verify that system (16) is hyperbolic with distinct eigenvalues given by

�− = u − c, �0 = u, �+ = u + c

�− = v − c, �0 = v, �+ = u + c
(17)

To discretize the equations in space we consider, for simplicity in presentation, a uniform
control volume [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] with mesh sizes �x = xi+1/2 − xi−1/2 and
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�y = y j+1/2 − y j−1/2 in x- and y-direction, respectively. Integrating (16) over the control volume
and keeping the time continuous we obtain the following semi-discrete system:

dUi, j

dt
+ F(Ui+1/2, j ) − F(Ui−1/2, j )

�x
+ G(Ui, j+1/2) − G(Ui, j−1/2)

�y
=Q(Ui, j ) (18)

where �i, j is the space average of a generic function � in the control volume [xi−1/2, xi+1/2] ×
[y j−1/2, y j+1/2]

�i, j = 1

�x

1

�y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

�(t, x, y) dx dy

whereas �i+1/2 j =�(t, xi+1/2, y j ) and �i j+1/2 = �(t, xi , y j+1/2) are the numerical fluxes at
(xi+1/2, y j ) and (xi , y j+1/2), respectively. The spatial discretization is complete when a numerical
reconstruction of the fluxes in (18) is chosen.

Let the time interval [0, T ] be divided into subintervals [tn, tn+1] of length �t such that tn = n�t
and we denote �n

i, j =�i, j (tn). The procedure to advance the solution of (18) from the time tn to
the next time tn+1 can be carried out as

U(1)
i, j =Un

i, j + �tR(Un
i, j )

U(2)
i, j = 3

4U
n
i, j + 1

4U
(1)
i, j + 1

4�tR(U(1)
i, j )

Un+1
i, j = 1

3U
n
i, j + 2

3U
(2)
i, j + 2

3�tR(U(2)
i, j )

(19)

where R stands for the right-hand side in (18), i.e.

R(Ui, j ) =−F(Ui+1/2, j ) − F(Ui−1/2, j )

�x
− G(Ui, j+1/2) − G(Ui, j−1/2)

�y
+ Q(Ui, j )

This class of explicit time integration schemes has become popular in CFD algorithms, see for
example [31, 32]. The nice feature of this method lies on the fact that (19) is a convex combination
of first-order Euler steps which exhibit strong stability properties. Therefore, the scheme (19) is
TVD, third-order accurate in time, and stable under the usual hyperbolic CFL conditions.

4.1. Spatial discretization

In order to reconstruct the numerical fluxes in the semi-discrete system (18), we consider a
relaxation-based method. This method reconstructs the fluxes without relying on Riemann problem
solvers and can be used with arbitrary order of accuracy. The first- and second-order relaxation
methods were first proposed in [24] to solve hyperbolic systems of conservation laws. A third-
order relaxation scheme has also been proposed in [25] and intensively tested in [26–28] for a
wide hyperbolic systems of conservation laws. The third-order method in the above-mentioned
references reconstructs the fluxes in (18) using linear combination of small stencils such that
the overall combination preserves the third-order accuracy. In the present work, we formulate a
fifth-order reconstruction for the numerical fluxes in (18). The key idea is to replace the linear
weights in the third-order reconstruction by nonlinear weights capable of reducing the spurious
oscillations that usually develop in regions with discontinuous derivatives.
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Associated with Equations (16) a relaxation approximation is

�tU + �xV + �yW=Q(U)

�tV + A2�xU= −1

ε
(V − F(U))

�tW + B2�yU= −1

ε
(W − G(U))

(20)

where V∈ R3 and W∈ R3 are relaxation variables, A2 and B2 are diagonal matrices in R3 × R3

where their entries A2
l and B2

l are characteristic speeds of (16). The relaxation system (20) has a
typical semilinear structure with linear characteristic variables defined by

F± =V±AU and G± =W±BU (21)

Formally, in the zero relaxation limit ε −→ 0, we recover the original system (16) provided the
subcharacteristic condition [24]

|F′
l(U)|
Al

+ |G′
l(U)|
Bl

�1 ∀l = 1, 2, 3 (22)

holds in (20). It is easy to verify that if we project the relaxation variables into the local equilibrium

V=F(U) and W=G(U) (23)

then the first equation in (20) reduces to the original conservation laws (16). From a numerical
view point, it is simpler to solve system (20) than the original equations (16). Here, our fifth-order
reconstruction is applicable directly to the linear characteristic variables (21). In what follows we
only formulate Ui+1/2, j and Vi+1/2, j , and expressions for other fluxes are obtained in an entirely
analogous manner.

Since the variables F+ and F− travel along constant characteristics with speeds +A and −A,
respectively, a WENO reconstruction can be easily applied to them. Thus, the numerical fluxes
F±

i+1/2, j at the cell boundary (xi+1/2, y j ) are defined as left and right extrapolated valuesF
+,L
i+1/2, j

and F−,R
i+1/2, j by

F+
i+1/2, j =F+,L

i+1/2, j , F−
i+1/2, j =F−,R

i+1/2, j (24)

These extrapolated values are obtained from cell averages by means of high-order WENO polyno-
mial reconstruction. Here, we use the fifth-order WENO reconstruction proposed in [23]. Higher-
order reconstructions are also possible, such as those developed in [22]. For the generic function
�(x, y), the fifth-order accurate left boundary extrapolated value �L

i+1/2, j is defined as

�L
i+1/2, j =�0V0 + �1V1 + �2V2 (25)

where Vr is the extrapolated value obtained from cell averages in the r th stencil (i−r, i−r + 1,
i − r + 2) in x-direction

V0 = 1
6 (−�i+2, j + 5�i+1, j + 2�i, j )

V1 = 1
6 (−�i−1, j + 5�i, j + 2�i+1, j )

V2 = 1
6 (2�i−2, j − 7�i−1, j + 11�i, j )
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and �r , r = 0, 1, 2, are nonlinear WENO weights given by

�k = 	k∑2
l=0 	l

, 	0 = 3

10(
 + IS0)2
, 	1 = 3

5(
 + IS1)2
, 	2 = 1

10(
 + IS2)2
(26)

Here the parameter 
 is introduced to guarantee that the denominator does not vanish and is
empirically taken to be 10−6. The smoothness indicators ISr , r = 0, 1, 2, are given by [23]

IS0 = 13
12 (�i, j − 2�i+1, j + �i+2, j )

2 + 1
4 (3�i, j − 4�i+1, j + �i+2, j )

2

IS1 = 13
12 (�i−1, j − 2�i, j + �i+1, j )

2 + 1
4 (�i−1, j − �i+1, j )

2

IS2 = 13
12 (�i−2, j − 2�i−1, j + �i, j )

2 + 1
4 (�i−2, j − 4�i−1, j + 3�i, j )

2

The right value �R
i+1/2, j is obtained by symmetry as

�R
i+1/2, j =�0V0 + �1V1 + �2V2 (27)

where

V0 = 1
6 (2�i+3, j − 7�i+2, j + 11�i+1, j )

V1 = 1
6 (−�i+2, j + 5�i+1, j + 2�i, j )

V2 = 1
6 (−�i−1, j + 5�i, j + 2�i+1, j )

The corresponding weights and smoothness indicators are given by (26) with

IS0 = 13
12 (�i+1, j − 2�i+2, j + �i+3, j )

2 + 1
4 (3�i+1, j − 4�i+2, j + �i+3, j )

2

IS1 = 13
12 (�i, j − 2�i+1, j + �i+2, j )

2 + 1
4 (�i, j − �i+2, j )

2

IS2 = 13
12 (�i−1, j − 2�i, j + �i+1, j )

2 + 1
4 (�i−1, j − 4�i, j + 3�i+1, j )

2

Once F+
i+1/2, j and F−

i+1/2, j are reconstructed in (24), the numerical fluxes Ui+1/2, j and Vi+1/2, j

in the relaxation system are obtained from (21) by

Ui+1/2, j = 1

2Ai+1/2, j
(F+

i+1/2, j − F−
i+1/2, j ), Vi+1/2, j = 1

2
(F+

i+1/2, j + F−
i+1/2, j ) (28)

Analogously, the numerical fluxesUi, j+1/2 andWi, j+1/2 are obtained fromG+
i, j+1/2 andG

−
i, j+1/2 as

Ui, j+1/2 = 1

2Bi, j+1/2
(G+

i, j+1/2 + G−
i, j+1/2), Wi, j+1/2 = 1

2
(G+

i, j+1/2 + G−
i, j+1/2) (29)

Note that the above local auxiliary variables, introduced to approximate the derivatives of the
solution, are superficial and can be easily removed for linear problems. Clearly, the accuracy of
the relaxation method will depend on the choice of the characteristic speeds Ai+1/2, j and Bi, j+1/2
in (28) and (29), respectively.
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4.2. Solution procedure

For wide enough pipes, the friction terms in (10) become negligible. Thus, the numerical method
described in the previous section is used to solve the frictionless two-dimensional Euler equations
(10) in the computational domain shown in Figure 4. Here, using the pipe diameter D as a reference
length, the domain is 4D high and 7D wide. Initial conditions are taken as

⎛
⎜⎝

�(0, x, y)

u(0, x, y)

v(0, x, y)

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

�1

u1

0

⎞
⎟⎠ in Pipe 1

⎛
⎜⎝

�2

u2

0

⎞
⎟⎠ in Pipe 2

⎛
⎜⎝

�3

0

v3

⎞
⎟⎠ in Pipe 3

(30)

Other pipe intersections can be handled in a similar manner. No-slip boundary conditions are
imposed on the solid walls and homogeneous Neumann conditions are used for the open boundaries.
The corner of the right step is a singular point and we treat it in the same way as in [33]. The
characteristic speeds Ai+1/2, j and Bi, j+1/2 in (28) and (29) can be chosen based on rough estimates
of eigenvalues (17). Other choice is to calculate the characteristic speeds locally at each control
volume [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] as

Ai+1/2, j = max{|�Li+1/2, j |, |�Ri+1/2, j |}, Bi, j+1/2 = max{|�L
i, j+1/2|, |�Ri, j+1/2|} (31)

D

D3D

Pipe 2Pipe 1

Pipe 3

3D

3D

Figure 4. Spatial domain used for the two-dimensional computations.
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A global selection is simply to take the maximum over the gridpoints in (31) as

A= max
i, j

(Ai+1/2, j ), B = max
i, j

(Bi, j+1/2) (32)

It should be stressed that larger values of Ai+1/2, j and Bi, j+1/2 usually add more numerical
dissipation to the relaxation scheme.

4.3. Theoretical results

The comparison between the results obtained by the numerical simulation and the analytical results
is presented in Section 5.2 and here we only comment on necessary assertions of the underlying
theory. Currently, only for the coupling conditions (7) and (8), analytical results for different
initial data exist, compare [9], but there are no explicit expressions for conditions (7) and (9). The
analytical solution for a one-dimensional pipe model in [9] relies on the hypothesis that the pressure
is constant at the tee intersection, that the mass is conserved and the flow direction does not change.
The aim of the presented simulations is to verify these assumptions which are commonly imposed
in many engineering applications. We simulate different inflow configurations for two types of tee
intersections with three connected pipes. We stop the two-dimensional simulation whenever a wave
exits the computational domain. This corresponds to the analytical discussion where only waves
of negative (respectively positive) speed emerge from the pipe-to-pipe intersection. In the second
stage, we average the computed results to obtain equivalent one-dimensional fluxes and pressures
for each pipe (referred to as simulation results in the sequel) and compare these values with
the analytical results obtained in [9]. Due to additional geometry effects in the two-dimensional
simulation we do not expect a full coincidence in the analytical and simulation results. But we are
looking for a verification of the underlying principle of conservation of mass and equal pressure at
the tee intersections. Furthermore, we expect both the analytical and simulation results to behave
in a similar way when changing the initial conditions.

5. NUMERICAL EXAMPLES AND RESULTS

In this section, we examine the accuracy of the proposed schemes for several different situations
and verify the coupling conditions at junctions in pipeline networks. Our test examples can be
considered in two general categories. We first perform an accuracy test for the fifth-order scheme.
Secondly, we test the ability of our scheme to verify the coupling conditions for two types of
junctions in a pipeline network. All the results presented in this section are obtained using the
relaxed method (ε = 0) using the local characteristic speeds (31). In all our computations the CFL
number is fixed to 0.75 and time steps �t are calculated according to the stability condition

�t =CFLmin

(
�x

|A2
i+1/2, j |

,
�y

|B2
i, j+1/2|

)
(33)

5.1. Accuracy test examples

First, we check the accuracy of the relaxation scheme for the scalar advection equation

�t u + �xu = 0, x ∈ [−1, 1] (34)
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Figure 5. Results for the one-dimensional linear advection equation at t = 6.

subject to periodic boundary condition and the following initial condition:

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
0.32�

e−500(x+0.7)2 if − 0.8�x� − 0.6

1 if − 0.4�x� − 0.2

1 − |10x − 1| if 0.0�x�0.2√
1 − 100(x − 0.5)2 if 0.4�x�0.6

0 otherwise

(35)

This test example is used to assess different features of the fifth-order relaxation scheme such
as accuracy in smooth regions and discontinuous resolution. Note that the solution of the linear
problem (34)–(35) includes a smooth but narrow combination of Gaussian, square, sharp triangle
and half-ellipse waves. The time necessary for a complete wave period is t = 2. In Figure 5 we
present the numerical solution obtained at time t = 6 using uniform grid with 200 gridpoints. For
comparison reasons we also include the result obtained using the second-order relaxation method
developed in [24].

From the results presented in Figure 5 we observe that the second-order scheme resolves this
advection problem poorly. For instance, excessive numerical dissipation has been introduced by the
second-order scheme for the Gaussian, triangle and half-ellipse waves. We see that the fifth-order
scheme is clearly superior to the second-order scheme. In particular, on the peak resolution in
triangular profile the fifth-order scheme produces the most accurate results.
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Table I. Error-norms for the one-dimensional isothermal Euler system.

Gridpoints L∞-error Rate L1-error Rate

40 0.17207E−00 —– 0.10263E−00 —–
80 0.13678E−01 3.653 0.65947E−02 3.960

160 0.86325E−02 3.986 0.34324E−03 4.264
320 0.30795E−04 4.809 0.10741E−04 4.998
640 0.94450E−06 5.027 0.30188E−06 5.153

Our next concern is to check the accuracy of our scheme for a nonlinear system of conservation
laws. To this end, we solve the one-dimensional isothermal Euler system of inviscid gas dynamics

�t� + �x (�u) = 0

�t (�u) + �x (�u2 + p) = 0
(36)

We solve the inviscid Euler system (36) in space domain [−�, �] with periodic boundary conditions.
Initial data are obtained from the smooth exact solution

�(x, t) = 1 + 0.2 sin(x − t), u(x, t) = 1, p(x, t) = 1 (37)

Table I shows a convergence study in the L∞- and L1-error norms for the fifth-order scheme. The
errors are calculated at time t = 1 by the difference between the point values of the exact solution
and the reconstructed point values of the computed density solution. As expected, the proposed
relaxation scheme preserves the fifth-order accuracy for this nonlinear system.

5.2. Verification of coupling conditions

This section is devoted to numerically verify the coupling conditions described in the present work.
We consider the two types of tee fittings illustrated in Figure 2, namely, one pipe with ingoing
flow and two pipes with outgoing flow (referred to as 1-to-2 situation) for the first example. For
the second example, two pipes with ingoing flow and one pipe with outgoing flow (referred to
as 2-to-1 situation) are considered. The pipe diameter is fixed to D = 0.5 in all our computations
and different initial conditions (30) are tested. For each simulation time, the pressure, density
and velocity solutions are stored and examined. We emphasize that we do not expect the same
final values from the simulation and the theoretical investigations due to the more complex two-
dimensional dynamics. We qualitatively compare the averaged values obtained by simulation (14)
and the theoretical predictions.

To verify the resolution of our numerical scheme we first check the grid dependence of the
solutions. To this end, we solve the 1-to-2 situation subject to the following initial conditions:

�1 = 2, �2 = 3, �3 = 4; u1 = 5, u2 = 1.666; v3 = −1.5 (38)

Figure 6 shows the grid effects on profiles of density and u-velocity at the mid-width of each pipe
using five different meshes with uniform spatial stepsizes �x = �y = h, where h = 0.08, 0.04, 0.02,
0.01 and 0.005. The results in Figure 6 are displayed at time t = 0.1. It is easy to see that solutions
obtained using the mesh with h = 0.08 are far from those obtained by the other meshes. Decreasing
the spatial step size, results for the mesh with h = 0.01 and the mesh with h = 0.005 are roughly
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Figure 6. Cross sections of density (left) and u-velocity for the 1-to-2 situation at time t = 0.1.
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Figure 7. Density snapshots for the 1-to-2 situation at four different times.

similar. Similar behaviour has been observed for the 2-to-1 situation. These results ensure grid
independence of the numerical results. Therefore, bearing in mind the slight change in the results
from the mesh with h = 0.01 and the mesh with h = 0.005 at the expense of rather significant
increase in the computational cost, the mesh with h = 0.01 is believed to be adequate to obtain
the results free of grid effects. Hence, our next simulations are performed using the mesh with
h = 0.01. A similar result is obtained for the 2-to-1 situation and we do not give the details here.

Further, we show the evolution of the two-dimensional dynamics on one sample initial data
showing the capturing of small circulations by our numerical scheme. Figure 7 displays snapshots
of the density at four different times t = 0.01, 0.05, 0.1 and 0.3 using the initial conditions (38). As
can be seen, low-density regions are generated in the tee intersection and are recirculated during
the simulation time. At the final time, these recirculation zones are accumulated near the corner of
the right step. Our high-order relaxation scheme captures accurately the evolution of the interface
in the computational domain without diffusing the fronts or introducing oscillations near steep
gradients.

After verifying the numerical solution procedure we turn to the comparison of the averaged
values as explained in Section 3.2 for different initial conditions. First, we consider the 1-to-2
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Table II. Verification of coupling conditions for the 1-to-2 situation.

�1 = 2 �1 = 2.4 �1 = 2.8 �1 = 3 �1 = 3.4 �1 = 3.8 �1 = 4

Pressure in the three pipes
Pipe 1 109.7044 118.0256 125.2863 127.3167 135.2049 141.9893 142.8606

(114.817) (122.111) (128.592) (131.591) (137.198) (142.368) (144.815)

Pipe 2 113.2206 120.4299 127.6552 129.2772 135.8529 140.8409 143.4291
(114.817) (122.111) (128.592) (131.591) (137.198) (142.368) (144.815)

Pipe 3 115.7017 121.4958 127.2871 130.1011 136.5938 141.9951 143.6773
(114.817) (122.111) (128.592) (131.591) (137.198) (142.368) (144.815)

Flux in the three pipes
Pipe 1 9.08376 11.14579 13.19811 14.20330 16.15881 18.04243 18.97299

(6.9352) (9.88412) (12.6283) (13.9365) (16.4441) (18.8266) (19.977)

Pipe 2 6.55352 7.61451 8.68304 9.22067 10.28872 11.32219 11.82324
(6.48497) (8.15181) (9.69579) (10.4298) (11.834) (13.1651) (13.8068)

Pipe 3 2.53080 3.53345 4.51625 4.98597 5.87229 6.72410 7.15516
(0.45022) (1.73231) (2.9325) (3.50661) (4.61009) (5.66158) (6.17018)

Note: We vary the density �1 and we keep other variables fixed. The values in parenthesis refer to the analytical
results.

Table III. Verification of coupling conditions for the 1-to-2 situation.

u1 = 4 u1 = 5 u1 = 6 u1 = 6.5 u1 = 7.5 u1 = 8.5 u1 = 9

Pressure in the three pipes
Pipe 1 115.2418 118.3104 120.8469 122.1585 124.8776 127.3623 128.5093

(124.492) (131.586) (139.071) (142.965) (151.065) (159.597) (164.028)

Pipe 2 115.0216 118.2603 120.8546 122.0521 124.4525 126.8142 127.9266
(124.492) (131.586) (139.071) (142.965) (151.065) (159.597) (164.028)

Pipe 3 117.0552 119.1032 121.9611 123.4902 125.6128 128.5010 129.8158
(124.492) (131.586) (139.071) (142.965) (151.065) (159.597) (164.028)

Flux in the three pipes
Pipe 1 11.24882 14.20343 17.25383 18.81524 21.96851 25.06985 26.62007

(10.8814) (13.9368) (17.3021) (19.1083) (22.9831) (27.2288) (29.4990)

Pipe 2 7.72225 9.21940 10.78482 11.57265 13.16401 14.74742 15.54325
(8.71461) (10.4311) (12.3148) (13.3234) (15.4826) (17.8424) (19.1019)

Pipe 3 3.52966 4.98454 6.47281 7.24308 8.80864 10.32311 11.08570
(2.16675) (3.50567) (4.98731) (5.78491) (7.50051) (9.38643) (10.3971)

Note: We vary the velocity u1 and we keep other variables fixed. The values in parenthesis refer to the analytical
results.
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Figure 8. Density snapshots for the 2-to-1 situation at four different times.

situation. Here, we vary the initial density in the first pipe �1 and keep the other initial conditions
fixed as in (38). The results of the simulation and the analytical results for the pressure and flux
are presented in Tables II and III. The analytical values appearing in Tables II and III are obtained
as explained in Section 4.3. For varying density (Table II) the values of the simulation and the
analytical results using equal pressure (8) and conservation of mass (7) nearly coincide in the case
of the pressure. Furthermore, a nearly constant pressure is observed in the simulation on all three
pipes. For the flux value, we observe mass conservation for the simulation results through the pipe
fitting in the sense that �1(u1 + v1) = �2(u2 + v2) + �3(u3 + v3). Only for low-density values
�1 ∈ [2, 2.8] the analytical flux values and the simulation values differ significantly. In the case
of varying velocity on pipe 1 (Table III) we observe that the simulation results do not match the
analytical results. However, the pressure in the simulation results is also nearly constant among
the three pipes and the analytical results increases with increasing initial velocity. Again, for the
flux values we observe mass conservation in the simulation results and a good coincidence with
the analytical results. Furthermore, the trend of the values coincides in the following sense: higher
inlet pressure yields also higher outlet pressures on all connected pipes and the increase in the
numerical as well as in the theoretical values is of the same order of magnitude. Therefore, we
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Table IV. Verification of coupling conditions for the 2-to-1 situation.

�1 = 2 �1 = 2.4 �1 = 2.8 �1 = 3 �1 = 3.4 �1 = 3.8 �1 = 4

Pressure in the three pipes
Pipe 1 140.4382 137.3583 156.5741 162.0017 171.4451 178.2517 178.7003

(148.159) (157.74) (166.208) (170.113) (177.384) (184.058) (87.206)

Pipe 2 132.1602 130.7926 145.0368 149.2337 157.0167 165.3663 172.7972
(148.159) (157.74) (166.208) (170.113) (177.384) (184.058) (87.206)

Pipe 3 131.9409 135.3705 150.8626 155.6209 163.7195 171.6990 177.0658
(148.159) (157.74) (166.208) (170.113) (177.384) (184.058) (87.206)

Flux in the three pipes
Pipe 1 4.66796 6.85069 9.25338 10.62823 13.13057 15.61265 17.03667

(2.36935) (5.84284) (9.08615) (10.6345) (13.6047) (16.4275) (17.7903)

Pipe 2 7.33813 7.21964 10.04339 11.08653 13.18215 15.19692 16.52907
(8.62266) (7.50797) (6.43258) (5.90914) (4.8891) (3.90234) (3.42052)

Pipe 3 7.87449 5.77260 7.06037 7.33073 7.88101 8.33301 8.72201
(10.992) (13.3508) (15.5187) (16.5436) (18.4938) (20.3299) (21.2108)

Note: We vary the density �1 and we keep other variables fixed. The values in parenthesis refer to the analytical
results.

have a good qualitatively agreement between the numerical simulation results and the theoretically
predicted values. Of course, the fully dynamics as illustrated in Figure 7 demonstrate that it is
more complex than one-dimensional model would predict. Summarizing, even though the absolute
values of both approaches do not coincide for all settings, we observe similar trends. The equal
pressure and mass conservation assumptions for the analysis carried out in [9] are also common
to many engineering approaches [20] and are reasonable in this setting.

We now turn our attention to the numerical verification of coupling conditions for the 2-to-1
situation. Again, we consider varying initial data and check for qualitative agreement between
numerical and theoretical results. We consider the following initial conditions:

�1 = 2, �2 = 4, �3 = 3; u1 = 5, u2 = 2.5; v3 = 4 (39)

We use a uniform mesh with h = 0.01 and illustrate in Figure 8 the density snapshots at times
t = 0.01, 0.05, 0.1 and 0.3. Again, low-density regions appear in the shock area located at the
junction of the three pipes which have been advected later to pipe 2. It can be clearly seen that the
complicated flow structures are being captured by our fifth-order reconstruction. The relaxation
scheme perform well for this test situation. We now prescribe density and flux as in Section 3.2
and give the analytical solutions in the equal pressure and conservation of mass case. We present
results for varying incoming densities in Table IV.

The most striking difference to the one-dimensional case is the difference in the final pressures
in the three pipes. Opposite to the 1-to-2 situation the pressure does not seem to converge to a
single pressure value at the intersection. Further, in the volume-averaged flux values we observe
differences. They might be due to the fact that the numerical solution is not stationary. Of course,

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:485–506
DOI: 10.1002/fld



SIMULATION OF TRANSIENT GAS FLOW AT PIPE-TO-PIPE INTERSECTIONS 505

the difference in the final pressures also influences the distribution of the fluxes and therefore, the
absolute values of the flux in Table IV differ significantly from the theoretical predictions. On the
other hand, a similar trend can be observed in both the numerical and theoretical results. Increasing
inlet pressure yields an increase of outlet pressures and mass fluxes and therefore, the raise is of
the same order of magnitude in both cases. Hence, in this situation the predicted theoretical values
obtained by conditions (7) and (8) cannot be supported by numerical results. This might be due to
the fact that the geometry of the intersection plays an important role when simulating a combined
inflow on two connected arcs. This supports the modelling common in the engineering community
where pressure loss factors are introduced near the intersection, see e.g. [21].

6. CONCLUDING REMARKS

We have conducted a numerical study of the most common types of pipe-to-pipe fittings in gas
flow by considering a two-dimensional representation of the fitting. Typically, each pipe in a gas
network is modelled as a one-dimensional domain to minimize the computational effort. Then,
at the tee intersections, coupling conditions have to be imposed. We have compared in this work
imposed conditions with simulation results for a two-dimensional situation. The numerical results
are carried out by a fifth-order relaxation WENO scheme for the governing equations. The scheme
replaces the nonlinear equations of conservation laws by a semilinear hyperbolic system with
linear characteristic speeds and easy to solve without relying on Riemann solvers or characteristic
decompositions. In addition, the scheme combines a fifth-order WENO reconstruction for the
spatial discretization and a TVD Runge–Kutta method for the time integration. The presented
results show good shock resolution with high accuracy in smooth regions and without any non-
physical oscillations near the shock areas.

The purpose of the two-dimensional numerical simulation of an intersection is to compare qual-
itatively the predicted effects of common theoretical assumptions with a full numerical simulation.
Depending on the considered geometry of the pipe-to-pipe fitting the assertions are partially val-
idated. In both cases the trend of theoretical and numerical results is similar. However, for the
2-to-1 tee fitting, the behaviour predicted by the one-dimensional differs from the results obtained
by the simulation. This might be due to the effect of the geometry on the two-dimensional flow
pattern. This supports another common modelling approach using geometry and flow-dependent
pressure loss factors at the intersection.

Since the main focus of the present work is to establish the ability of simulating coupling
conditions at the pipe intersections, the simulation of a full gas network using a two or even
three-dimensional model has not yet been carried out and will be subject to future work.
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